这个问题一直存在于ns方程的研究之中,让所有的研究者们都头疼不已,像当初陶哲轩发表的一篇论文,也正是为了研究这个问题,只不过他也同样没有很好地解决这个问题。
而现在,毫无疑问的,李牧解决掉了。
实际上,看完了他列出来的提纲之后,陶哲轩他们就明白了。
“是啊……整体化空间真的是一个十分完美的,能够完美地消除内部压力,并且平衡粒子之间的种种相互作用力。”
德利涅也深深地点了点头。
“早就该意识到的。”
……
这些大牛们都在心中忍不住为李牧的这一步而喝彩着。
而台上的李牧,大致上也能猜出台下这些听众们心中的想法。
当这个最大的问题得到了解决,在后面的问题,也将会变得十分方便起来。
只不过,这之前的过程,是怎样的?
“整体化空间,既能够将流体的一整个区域,完全地整体化,而同样的,我们永远不要忘记微分的方法。”
“我们也能够将这一整个区域分割成无数的小区域,然后再对这些小区域进行整体化,这也是玻尔兹曼方程中所体现出来的思想。”
“那么,接下来,我们开始代入纳维尔-斯托克斯方程的一般形式,开始使用我刚才所说的那个方法——我愿意将它称之为整体化微分……”
李牧来到了黑板前,开始在上面写起了下面的步骤。
台下的所有人都聚精会神地看着他所写的东西,同时也对他刚才所说的,将整个区域分割成无数的小区域,再进行整体化空间的分析而感到有兴趣。
他们听得出来,这明显是一种对整体化空间的运用方法。
这也正是他们希望学习到的。
只不过,随着李牧开始写起来后,众人便都惊叹了起来。
这个整体化微分方法,从技巧难度上,实在有些太秀了点。
用围棋的话来说就是妙手,用钢琴曲来说的话就是拉赫玛尼诺夫第三钢琴协奏曲,小提琴曲就是帕格尼尼第二十四首随想曲。
这样的技巧难度……
让他们不得不惊叹,李牧还是那个李牧!
就像是他曾经证明的另外几个猜想一样。
当然,一时的惊叹,并没有影响到他们跟着李牧的步骤继续思考着。
在完成了这一部分之后,下面的一切似乎都变得清晰明朗了起来。
当ns方程的一般形式被描述在了整体化空间之中,关于湍流的不规则问题,似乎也明显了起来。
ns方程尝试描述的就是湍流,湍急的河流、滚滚的暴风云或烟囱冒出的烟雾等等,都属于湍流,这也是让各种学者们都为之着迷的问题。
像维尔纳·海森堡,那位提出了海森堡不确定性原理的著名物理学家,就曾经被提问过,如果他死后上了天堂,最想问上帝什么问题,他回答道:“当我遇到上帝时,我会问他两个问题:为什么是相对论?为什么会出现湍流?我相信他只会回答第一个问题。”
意思就是说,大概上帝也回答不上来第二个问题。
所以,李牧能否在一定程度上,让这个问题更进一步呢?
……
黑板逐渐的被写满了。
上面满满地如同天书一样的式子,让台下的众多听者们一时间都有些昏昏欲睡。
那些参加了李牧第一场报告,并且当时害惊讶于自己居然能够听懂他报告的人们,此时只能苦笑起来,明白自己还是太年轻了。
不是他们听懂了李牧的报告,而是李牧让他们可以听懂报告。
就这样,时间约莫过去了四十多分钟。
按照之前正常的一小时报告,40多分钟的时间,报告基本都已经快要结束了,但显然在场的人都知道,现在的报告才刚刚过去了一半,或许还不到——
当李牧在黑板上完成了一次收尾,他转身说道:“那么到这里,我已经彻底地将流体的每个部分,都控制在了整体化空间的内部。”
“在此处我们对时间线进行处理,便可以发现,无论时间线怎样变化,blow-up time,都将不再出现。”
“也就是说,在过往,我们所面临的爆炸时间问题,彻底地得到了解决。”
“那么——”
随着的李牧的声音落下, ppt的页面再次一动,上面,出现的是一段陈述。
而对于这段陈述,数学界的人们都十分的熟悉。
【在三维的空间及时间下,给定一初始的速度场,存在一向量的速度场及纯量的压强场,为纳维尔-斯托克斯方程式的解,其中速度场及压强场需满足光滑及全局定义的特性。】
“这段陈述,我想大家都知道,这就是克雷研究所在千禧年七大难题中,对纳维尔-斯托克斯方程解的存在性和光滑性的完整陈述。”
“那么,回归到式3.3。”
李牧指了指黑板上面,他讲ns方程和整体化空间的结合形式。
“从此处开始,我将证明这个速度场和压强场的存在。”
“当然——”李牧微微一笑:“接下来的步骤,我想大家也基本上都能够看出来了。”
百分之九十九的大家:“?”
他们看出了个鬼来啊!
大概从几十分钟前,他们就什么都没看出来了。
最终,他们只能默认,李牧所说的大家,其实是坐在前面那几排的“数学大家”们。
当然,前面几排的大佬们,此时也确实都已经释然了。
接下来的步骤,确实已经明显了起来。
“在整体化空间下,ns方程都变得这么简单了。”
“也就是还是不能回避那个二阶导数项,无法求得精确解。”
“在想什么……能够证明解的存在就行了,精确解这种东西,还是等我们死之后问上帝再说吧。”
“上帝知不知道还难说呢。”
德利涅几人摇头感叹起来。
也确实如他们所想的那样,接下来的步骤,李牧甚至都没有给出太多的解释,直接畅通无阻般地写了起来。
其中或许也仍然存在一些一般人无法理解的问题,但对于李牧来说,这些问题都算不上什么问题。
直到黑板在被擦掉之后,再一次被写满后——
“……经过验证,该速度场和压强场,都是光滑的。”
“所以,我想最终的结果已经出来了,在三维空间以及时间之下,确实存在一光滑,且满足全局定义的,向量的速度场和纯量的压强场,为纳维尔-斯托克斯方程的解。”
说到这里,李牧也放下了手中的笔,走到了讲台的最前面。
“起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。”
“无论是数学家还是物理学家们都深信,无论是微风还是湍流,都可以通过理解纳维尔-斯托克斯方程的解,来对它们进行解释和预言。”
“而到现在。”
“如果我的证明过程足够严谨,且没有任何前后理论上可能存在的矛盾点以及误差。”
“那么我想,我们现在可以明确的是,关于纳维尔-斯托克斯方程,的确存在一个光滑的解。”
“至此,我们距离理解湍流更进了一步。”
“有人说,上帝可能也不知道为什么会有湍流。”
“但我想,我们数学家和物理学家们,终将知道!”
上身微微前倾。
掌声随之炸开般地响起。
ns方程的blow-up time结束了,但属于李牧的blow-up time,又一次开始了!
(本章完)